
## 12.67. Visualize:



**Solve:** We choose two equal time intervals  $t_b - t_a$  and  $t_c - t_b$ . A constant velocity and equal time intervals means that  $x_b - x_a = x_c - x_b$ . The area swept from t = 0 s to  $t = t_a$  is  $Rx_a/2$  and the area swept from t = 0 s to  $t = t_b$  is  $Rx_b/2$ . Thus, the area swept between  $t = t_a$  and  $t = t_b$  is  $R(x_b - x_a)/2$ . In the same way, the area swept between  $t = t_b$  and  $t = t_b$  is  $R(x_b - x_a)/2$ . Since  $x_c - x_b = x_b - x_a$ , the area swept during time  $(t_b - t_a)$  is the same as the area swept during an equal time  $(t_c - t_b)$ . Kepler's second law is obeyed.